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Fisher's information is a statistical quantity related to

maximum-likelihood theory. It is a matrix de®ned as the

expected value of the squared gradient of minus the log-

likelihood function. This matrix is positive semide®nite for any

parameter value. Fisher's information is used in the quasi-

Newton scoring method of minimization to calculate the shift

vectors of model parameters. If the matrix is non-singular, the

scoring-minimization step is always downhill. In this article, it

is shown how the scoring method can be applied to

macromolecular crystallographic re®nement. It is also shown

how the computational costs involved in calculation of the

Fisher's matrix can be ef®ciently reduced. Speed is achieved

by assuming a continuous distribution of reciprocal-lattice

points. Matrix elements calculated with this method agree very

well with those calculated analytically. The scoring algorithm

has been implemented in the program REFMAC5 of the

CCP4 suite. The Fisher's matrix is used in its sparse

approximation. Tests indicate that the algorithm performs

satisfactorily.
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1. Introduction

The maximum-likelihood (ML) method together with Baye-

sian statistics have found successful application in macro-

molecular crystallography (Bricogne, 1997). Remarkably good

results have already been achieved in the areas of experi-

mental phasing and phase improvement (de La Fortelle &

Bricogne, 1997; Lunin & Urzhumtsev, 1984; Read, 1990), map

calculation (Read, 1986), density modi®cation (Terwilliger,

2000, 2001), molecular replacement (Read, 2001) and struc-

ture re®nement (Bricogne & Irwin, 1996; Pannu & Read, 1996;

Murshudov et al., 1997; Pannu et al., 1998). Yet further

advances can be expected with the development of more

sophisticated probability distributions. In the long run, the

natural ability of this statistical framework to incorporate

information from different sources (Bricogne, 1997) can even

be expected to lead to the substantial decompartimentaliza-

tion of many of the traditional crystallographic computational

steps. Such a unifying approach would properly represent the

continuity existing in the process of structure determination.

In principle, the ML method can also allow the joint treatment

of data arising from related experimental techniques such as

X-ray diffraction, electron diffraction and neutron diffraction.

The ever-increasing appreciation of the bene®ts and

potential of the ML method in macromolecular crystallo-

graphy is stimulating the introduction of related statistical

quantities to the ®eld. A well established concept in ML

theory is that of Fisher's information (Fisher, 1922; Stuart et

al., 1999). Fisher's information is a matrix de®ned as the

expected value of the squared gradient of minus the log-



likelihood function. This quantity is encountered in different

®elds. In processes of optimization, it is used in connection

with the scoring method (Osborne, 1992; Smyth, 1996) to

maximize a likelihood function (or minimize a minus log-

likelihood function). It is also a measure of the ability to

estimate a parameter (Stuart et al., 1999). Algorithms based on

Fisher's information are used in population genetics (Frieden

et al., 2001), image-quality assessment (Parra & Barrett, 1998;

Barrett et al., 1995), population pharmacokinetic studies (Tod

et al., 1998; Retout et al., 2001) and time-series modelling

(Klein & Melard, 1995). Frieden (1998) has also proposed a

physical signi®cance for this matrix as a measure of the state of

disorder of a system.

Fisher's information and the related scoring method of

minimization ®nd natural application in ML macromolecular

crystallographic re®nement. The process of structure

improvement is a large optimization problem which takes

advantage of algorithms of different complexity and applic-

ability. Generally, the choice of the most appropriate algo-

rithm depends on the accuracy of the initial parameters. At

early stages of crystal structure analysis, simulated annealing

combined with molecular dynamics has been shown to

improve the re®nement behaviour and to increase the radius

of convergence (BruÈ nger et al., 1987). At later stages, ®rst- and

second-order minimization methods give better results

(Fletcher, 1987). In particular, the more demanding second-

order methods (Newton and quasi-Newton methods), which

use the second derivatives of the function in addition to the

®rst derivatives, have better rates of convergence. The scoring

method belongs to the quasi-Newton methods. It approx-

imates the Hessian matrix used in Newton's method for the

solution of the system of linear equations to obtain the shift

vectors of atomic parameters with the Fisher's matrix.

In this account, we introduce the Fisher's information and

the scoring method of minimization to macromolecular crys-

tallographic re®nement. In addition to working out the rele-

vant equations, we show how the considerable costs associated

with evaluation of the matrix can be dramatically reduced. To

this end, we use a generalization of the method proposed by

Templeton (1999) for the fast calculation of normal matrix

elements in least-squares re®nement. The scoring method of

minimization has been implemented in the program

REFMAC5 (Murshudov et al., 1997) of the CCP4 (Colla-

borative Computational Project, Number 4, 1994) suite. It uses

the sparse approximation of the Fisher's information. Tests

indicate that the algorithm performs satisfactorily.

2. Fisher's information and the scoring method of
minimization

Let o = (o1, o2, . . . , on)T be a random vector of observations

with conditional probability distribution P(o; p) = L(o; p)1

where p = (p1, p2, . . . , pm)T is a parameter vector. Let

L = ÿlogL(o; p) denote the minus log-likelihood function of

p. Let also u(p) be the gradient of L,

u�p� � @L
@p
: �1�

The quantity ÿu(p) is called the score function (Stuart et al.,

1999).

Fisher's information I(p) is a (m � m) matrix de®ned as

(Stuart et al., 1999)

I�p� � Eo�u�p�u�p�T �
� R . . .

R �u�p�u�p�T � exp�ÿL� do1 . . . don: �2�

The symbol E indicates the expectation operator. The

subscript de®nes the variable(s) of integration. In the

remainder of the paper it will be dropped, except when the

variable(s) of integration need to be explicitly stated to avoid

confusion.

If the second derivatives of L exist and the operations of

differentiation and integration can be exchanged, I is alter-

natively expressed as (Lee, 1997; Stuart et al., 1999)

I�p� � Eo

@2L

@p@pT

� �
: �3�

The Hessian �@2L=@p@pT� calculated at the given observation

point is also called the observed information matrix (Smyth,

1996).

The scoring method is a quasi-Newton method of mini-

mization (Osborne, 1992; Smyth, 1996), whereby the

maximum-likelihood estimator p̂ of p is sought in an iterative

manner by solving the system of linear equations

Ik�k � ÿuk; �4�

where �k represents the vector shift to be applied at cycle k to

the current estimate pk.

The scoring method has attractive properties compared

with Newton's method, which represents the paradigm for the

second-order minimization methods. The characteristic

feature of the scoring algorithm is the replacement of the

observed information matrix with its expectation. The latter is

positive semide®nite for any parameter value. As a result, the

scoring step is necessarily downhill if I is non-singular. This

property gives the scoring method a distinct advantage over

Newton's method as it removes one of the classical problems

of the latter; that is, its inability to distinguish maxima from

minima. According to Smyth (1996), the scoring method is, in

general, linearly convergent at a rate which depends on the

relative difference between the observed and expected infor-

mation. In short runs the scoring method can sometimes be

even superior to Newton's method. Kale (1961) has shown

that although Newton's method ultimately converges faster in

the vicinity of the minimum, the scoring method will often give

better results for the ®rst few iterations when the number of

observations is large. This method therefore seems appro-

priate for macromolecular crystallographic re®nement.
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1 In this account, we follow the notation of Stuart et al. (1999). When p is ®xed
and o varies, L(o; p) represents the probability distribution of o. When o is
®xed and p varies, L(o; p) instead represents the likelihood of p. The
interpretation will be clear from the context.
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3. Fisher's information in crystallographic minimization

In order to use (4) in macromolecular crystallographic mini-

mization, we need to ®nd ef®cient ways of calculating I and u.

Equations for u in a form suitable for most residuals using fast

Fourier transformation (FFT) have been given by various

authors (Agarwal, 1978; Lunin & Urzhumtsev, 1985; BruÈ nger,

1989; Bricogne, 1993; Murshudov et al., 1997; Tronrud, 1999).

The score vector u is therefore assumed to be known. In this

account, we will focus on I .

Let L depend on all structure factors Fh and F�h and be

invariant under the exchange of Fh and F�ÿh. Let also Fh

contain entirely the dependency on model parameters pis. If

Fh = F�ÿh, e.g. in the absence of anomalous scatterers, the ®rst

derivative of L with respect to a parameter pi can be expressed

as

@L

@pi

�P
h

@L

@Ahc

ÿ i
@L

@Bhc

� �
@Fhc

@pi

; �5�

where Ahc and Bhc are the real and imaginary parts of the

calculated structure factor Fhc, respectively, and the summa-

tion is over all re¯ections h = (h1, h2, h3).2

As L is real, the quantity (@L=@pi) is real. Thus, (5) can also

be written using the complex conjugates

@L

@pi

�P
h

@L

@Ahc

ÿ i
@L

@Bhc

� ��
@Fhc

@pi

� ��
; �6�

therefore, by substituting (5) and (6) into (2), we obtain

I�pi; pj� � E
�P

h

@L

@Ahc

ÿ i
@L

@Bhc

� �
@Fhc

@pi

� P
k

@L

@Akc

ÿ i
@L

@Bkc

� ��
@Fkc

@pj

� ���
�P

h

P
k

E
�

@L

@Ahc

ÿ i
@L

@Bhc

� �
@L

@Akc

ÿ i
@L

@Bkc

� ���
� @Fhc

@pi

@Fkc

@pj

� ��
: �7�

The conditional expectation (given p) of the ®rst derivatives of

L is zero. Therefore, if the derivatives [(@L=@Ahc� ÿ
i�@L=@Bhc)] for different re¯ections are uncorrelated (this is

the case for most crystallographic likelihood functions), all

terms in the above equation vanish except for h = �k. Thus, I
can be expressed as

I�pi; pj� �
P

h

E @L

@Ahc

ÿ i
@L

@Bhc

���� ����2
" #

@Fhc

@pi

� �
@Fhc

@pj

� ��
� P

h

E @L

@Ahc

ÿ i
@L

@Bhc

� �2
" #

@Fhc

@pi

� �
@Fhc

@pj

� �
� I 1 � I 2: �8�

The terms I 1 and I 2 generalize the terms H1 and H2,

respectively, derived by Agarwal (1978) in the case of least-

squares. Similarly to H2, the term I 2 can be predicted to be

small as it involves the phase term. (8) can therefore be

written as

I�pi; pj� � I 1 �
P

h

E�Wh�
@Fhc

@pi

� �
@Fhc

@pj

� ��
; �9�

where

Wh �
@L

@Ahc

ÿ i
@L

@Bhc

���� ����2: �10�

E(Wh) can be regarded as the likelihood-weighting factor. It

modulates I depending on the particular likelihood function

employed. If the observations are independent given p and

normally distributed, then the likelihood-weighting factor

becomes the least-squares weight.

Notably, Wh is the only term in (9) that depends on L. This

is convenient for implementation purposes as the use of

different likelihood functions only requires the estimation of a

different E(Wh). (10) also shows that the derivation of Wh can

be performed using only the ®rst derivatives of L. Although an

alternative formulation which uses the second derivatives is

also possible (see Appendix A), the form of Wh given above

has clear advantages in terms of simplicity of implementation.

4. The likelihood-weighting factor E(Wh)

The particular form of Wh depends on the type of likelihood

function used. In many applications L for the acentric case has

the form (Murshudov et al., 1997; Bricogne, 1997)

L � ÿ 1

2

P
h

log
R

P�jFhoj; '; Fhc� d';

P�jFhoj; '; Fhc� �
1

�"�
exp ÿ jFho ÿ Fhcj2

"�

� �
jFhoj; �11�

where " is the re¯ection multiplicity, � = EjFhoj;'(|Fho ÿ Fhc|
2)/"

is the conditional normalization coef®cient and ' is the phase.

The notation P(a; b) indicates the conditional probability for

a given b. In the above equation, Fhc is implicitly assumed

to arise from the summation over all the available partial

structures. It also incorporates the maximum-likelihood scale

factor D.

The ®rst derivatives of L with respect to the real and

imaginary parts of the calculated structure factor can be

written as

@L

@Ahc

ÿ i
@L

@Bhc

� �
� ÿE'��Fho ÿ Fhc���

"�

� ÿ
R

P�'; jFhoj;Fhc��Fho ÿ Fhc�� d'

"�
; �12�

where we have used the fact that

P�'; jFhoj; Fhc� �
P�jFhoj; '; Fhc�

P�jFhoj; Fhc�
: �13�

2 Without loss of generality, an orthogonal cell system is assumed throughout
the paper. This can be generated from any cell system using a suitable matrix
(McKie & McKie, 1986). Owing to the orthogonal setting, the re¯ection
indices are therefore in general non-integer. For convenience, all equations are
also given assuming a P1 space group.



As the integral
R

P('; |Fho|, Fhc)d' is equal to one, (12) can be

rewritten as

@L

@Ahc

ÿ i
@L

@Bhc

� �
� ÿ jFhoj

R
P�'; jFhoj;Fhc� exp�ÿi'�d'ÿ �Fhc��

"�
:

�14�
(14) brings the calculation of the ®rst derivatives to the

calculation of the expected value of exp(i') given Fho and Fhc.

From (10) and (12) we have

E�Wh� �
EjFhoj�jE'�Fho ÿ Fhc�j2�

�"��2 �15�

and remembering the expression for � we can then write

E(Wh) as

E�Wh� �
EjFhoj�jE'�Fho ÿ Fhc�j2�
�EjFhoj;'�jFho ÿ Fhcj2��2

: �16�

In the above expressions for E(Wh), the term � has been taken

out of the expectation operator. In principle, this is legitimate

as � depends on the distribution of (Fho ÿ Fhc) but not on the

observed structure factors themselves. In practice, however, �
is estimated by maximizing its likelihood given the observed

re¯ections. If only free re¯ections are used, i.e. re¯ections not

included in re®nement (BruÈ nger, 1992), then the dependence

of � on Fho can be ignored. To employ all re¯ections, tech-

niques such as the bootstrap method (Efron, 1979) or a

marginal likelihood maximization (Lebedev et al., 2003) need

to be used.

(16) allows the appreciation of a practical advantage offered

by the use of the Fisher's information. As the distribution of

(Fho ÿ Fhc) is essentially the same within resolution

shells, E(Wh) can be conveniently approximated by a one-

dimensional function dependent only on the modulus of the

scattering vector; that is, E(Wh) � E[W(s)]. At present,

E[W(s)] is calculated by numerical integration and ®tted either

by an exponential function or by a smoothening function with

a Gaussian kernel depending on data quality. The latter type

of function has been observed to work better for low-

resolution data, at early stages of re®nement, or when the

number of free re¯ections is small. The exponential function is

employed in all other cases. (16) also allows the conclusion

that the knowledge of the likelihood itself is in principle not

required for the estimation of the likelihood weighting factor.

Only the ®rst and the second moments of the differences

between the observed and the calculated structure factors are

needed.

An equation similar to (16) can be derived for intensity-

based re®nement. In this case, the form of the likelihood

function is of the type (Pannu & Read, 1996)

L � ÿ 1

2

P
h

log
R R

P�Iho; Fh�P�Fh; Fhc� dAhdBh;

P�Fh; Fhc� �
1

�"�
exp ÿ jFh ÿ Fhcj2

"�

� �
: �17�

Following arguments similar to those leading to (16), E(Wh)

for this type of likelihood can be expressed as

E�Wh� �
EIho
�jEFh
�Fh ÿ Fhc�j2�

�EIho;Fh
�jFh ÿ Fhcj2��2

: �18�

The approach presented in this section for the single-crystal

case can be extended. An outline of a procedure applicable for

multi-crystal re®nement is given in Appendix B.

5. Integral approximation of Fisher's information

For practical purposes, equation (9) needs to be explicated

further. Working out the derivatives of Fhc with respect to the

various atomic parameters and indicating with pi(n) and pj(m)

re®nable parameters attached to atoms n and m, respectively,

I can be written as

I�pi�n�; pj�m�� � Kpipj
Qnm

P
h

E�W�s��Hpipj
Fo

nmTnm

� trigpipj
�2�hDnm�; �19�

where Qnm, Fo
nm and Tnm are terms corresponding to the

products of the occupancies, scattering factors at rest and

thermal factors of atoms n and m, respectively, whereas Kpipj
,

Hpipj
and trigpipj

, the latter of which represent a trigonometric

function, are terms which depend on the particular combina-

tion of parameters considered as reported in Table 1. Dnm is

the interatomic vector.

The direct calculation of I according to (19) is time-

consuming. It requires a time which is proportional to the

number of re¯ections (Nref) times the number of matrix

elements (Nel). A considerable improvement in speed can be

achieved by using FFT methods (Agarwal, 1978; Murshudov et

al., 1997, 1999; Tronrud, 1999) or the fast differentiation

algorithm proposed by Urzhumtsev & Lunin (2001) for the

Hessian matrix. These methods require a number of opera-

tions (c1Nel + c2NreflogNref), where c1 and c2 are constants, the

values of which depend on the method considered. The

dependence on the number of re¯ections and matrix elements

can be reduced substantially, further improving the speed of

the calculation. This can be performed by assuming that

reciprocal-lattice points are dense enough that (19) can be

legitimately made continuous (Agarwal, 1978; Dodson, 1981;

Templeton, 1999). In mathematical terms, this is obtained by

replacing the summation over the sphere de®ned by the

measured re¯ections with an integration in reciprocal space,

I�pi�n�; pj�m�� � Kpipj
Qnm

R
res: sphere

E�W�s��Hpipj
Fo

nmTnm

� trigpipj
�2�hDnm� dh1 dh2 dh3: �20�

Elements of I can be evaluated very ef®ciently in a two-step

procedure. In the ®rst step, the tabulation step, a limited set of

integrals are evaluated in a convenient coordinate system. In

the second step, the rotation step, the tabulated values

obtained in the ®rst step and suitable rotation matrices are

used to obtain the various elements of I in the original

coordinate system.
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5.1. Tabulation step

Let us write out the expression of the product Fo
nmTnm in an

explicit form. Using the ®ve-Gaussian approximation for the

atomic scattering factor at rest fo(n, s) =
P5

u�1au exp(ÿbus2/4),

b5 = 0 and the isotropic description of the atomic thermal

factor t(n, s) = exp[ÿB(n)s2/4], this product can be expressed

by the double summation3

Fo
nmTnm �

P5

u�1

P5

v�1

au�n�av�m�

� exp ÿ�bu�n� � bv�m� � B�n� � B�m��s2

4

� �
: �21�

Equation (20) can therefore be written in the form

I�pi�n�; pj�m�� �
P5

u�1

P5

v�1

Kpipj
Qnmau�n�av�m�

� R
res: sphere

E�W�s��Hpipj
exp ÿBuv�n;m�s2

4

� �
� trigpipj

�2�hDnm� dh1 dh2 dh3; �22�

where Buv(n, m) = bu(n) + bv(m) + B(n) + B(m).

Let Ipipj
denote integrals of the form

Ipipj
� R

res: sphere

E�W�s��Hpipj
exp�ÿBs2=4�

� trigpipj
�2�hD� dh1 dh2 dh3: �23�

If general tables for Ipipj
were available over a range of B and

D values wide enough to cover all Buv and Dnm, the evaluation

of the various elements of I could be performed very ef®-

ciently using interpolation techniques.

The construction of such a family of tables requires the

choice of a coordinate system. Using standard spherical polar

coordinates (�,  , �) (see Appendix C), the tabulation of the

integrals Ipipj
can be conveniently performed in a coordinate

system x0, y0, z0 oriented such that the z0 axis is parallel to the

interatomic vector D.

Let h0 represent h in this system. Integrals I0pipj
(the prime

refers to the `convenient' system) can be written as

I 0pipj
� Rsmax

smin

E�W���� exp�ÿB�2=4� R�
0

R2�
0

H 0pipj

� trigpipj
�2��D cos �J d� d d�; �24�

where J is the Jacobian for the coordinate transformation

applied. How these integrals are evaluated is exempli®ed for

positional parameters in Appendix C.

The use of the `convenient' coordinate system substantially

reduces the number of integrals to be tabulated, as most of the

I 0pipj
vanish. In the case of anisotropic re®nement, for example,

only 12 tables of integrals are required instead of 55. This is

bene®cial for the ef®ciency of the method, especially in the

case of ML re®nement. In least-squares re®nement the

weighting factor E(Wh) does not change while updating the

model, whereas in ML re®nement the weight is revised at each

re®nement cycle. ML re®nement therefore requires that all

tables are recalculated accordingly. Since the time taken by

the tabulation step is proportional to the number of integrals

I 0pipj
that need to be evaluated, it is important to reduce it to

the minimum.

5.2. Rotation step

In general, integrals I0pipj
are different from Ipipj

. They

coincide only when Dnm is aligned with the orthogonal z axis

or in the case of IBB, Iqq and IBq matrix elements. For them the

equivalence holds because their H term does not depend on

the orientation (see Table 1). For all other elements, H is

orientation dependent.

To obtain expressions of Hpipj
in terms of H0pipj

, it is suf®cient

to consider that

h � RTh0; �25�

where R is the rotation matrix that transforms (x, y, z) to

(x0, y0, z0). A way to construct the matrix R is given in

Appendix C.

Using the relation (25) integrals, Ipipj
can be calculated as a

linear combination of the reduced set of tabulated quantities.

For example, in the case of positional parameters

Ixixj
� P3

u�1

P3

v�1

tiutjvI0xu;xv
; �26�

where tiu are the elements of the RT matrix. The number of

summations that need to be performed depends on the type of

parameter pair being evaluated. At most, in the case of IUijUkl

matrix elements, four summations are required.

An example of this procedure is given in Appendix C.

Table 1
The explicit form of the terms Kpipj

, Hpipj
and trigpipj

in equation (19) for
various types of matrix elements I�pi; pj�.
The symbols xi and Uij indicate a positional and anisotropic atomic
displacement parameter (ADP), respectively. The symbols B and q indicate
the isotropic atomic displacement parameter and the occupancy, respectively.
The symbol hi indicates a re¯ection index matching (in the sense of Laue) a
certain parameter. For example, pipj = xz corresponds to Hpipj

= hl and
pipj = U11U23 corresponds to Hpipj

= h2kl. The symbol s is the length of the
scattering vector. The quantity cij which is present when anisotropic ADPs are
involved is a coef®cient de®ned as cij = 1 if i = j and cij = 2 if i 6� j, which takes
into account the symmetry of the U tensor.

pi pj Kpi pj
Hpipj

trigpipj

xi xj 2�2 hihj cos
B B 1/32 s4 cos
Uij Ukl 2�4cijckl hihjhkhl cos
q q 1 1 cos
xi B �/4 his

2 sin
xi Ukl 2�3ckl hihkhl sin
xi q � hi sin
B Ukl ckl/4 s2hkhl cos
B q 1/8 s2 cos
Uij q �2cij hihj cos

3 Note that in the case of anisotropic re®nement the isotropic approximation is
used only for Tnm. The trigonometric terms in (19) and (20) are exact.



6. Results

6.1. Validity of the integral approximation

The validity of the integral approximation, i.e. the

replacement of equation (19) by equation (20), relies on a

distribution of reciprocal-lattice points dense enough to be

considered continuous. This approximation is therefore

expected to increase in accuracy the larger the molecule

considered and the higher the resolution available. Such a

dependency on the molecular size makes this method parti-

cularly attractive in the case of large macromolecular

problems, which incidentally are those for which the calcula-

tion of even a sparse second-derivative matrix by other

methods is prohibitively expensive.

In order to obtain a feeling of the limitations of the integral

approximation, a number of tests have been carried out on the

relatively small protein bovine pancreatic phospholipase A2

(bpPLA2; 123 amino acids; one molecule in the asymmetric

unit), for which complete data are available to 0.97 AÊ (Steiner

et al., 2001). A comparison of the values for positional and BB

elements obtained by summation according to (19) with those

obtained by integration using (20) has been performed using

different resolution limits. As a measure of agreement within a

distance limit Dmax we have used the diagonal normalized

quantity A(%) de®ned as

Apipj
�%� � 100

PDmax

D�0

jI sum
pipj
�D� ÿ I int

pipj
�D�j

�I sum
pipi
�0�I sum

pjpj
�0��1=2

* +
; �27�

where I int
pipj

represents an I element calculated with (20) and

I sum
pipj

represents an I element calculated with (19). The nota-

tion hxi is used here to indicate the average of x. The diagonal

normalization is used in order to bring the error |I sum
pipj
�D� ÿ

I int
pipj
�D�| onto a scale relative to the elements of highest
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Figure 1
Comparison of normalized Fisher's information matrix elements for positional and BB parameters calculated with the summation method (black lines)
and the integration method (red lines) as a function of the interatomic distance and resolution limit. The atoms forming the pair are an N atom and a C
atom. The orientation of the interatomic vector corresponds to that of the vector NÐC� of the ®rst amino acid of the structure bpPLA2 (PDB code 1g4i;
Steiner et al., 2001). This vector has been chosen for display for its random orientation. The ADPs of the N atom and C atom are 7.26 and 7.94 AÊ 2,
respectively.
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magnitude which dominate the matrix (Agarwal, 1978;

Tronrud, 1992; Jelsch, 2001). This type of normalization is

similar to that employed for matrix conditioning prior to

solving the system of linear equations (4). The best agreement

is for A(%) equal zero.

Using a sample of 100 randomly oriented interatomic

vectors and a distance cutoff Dmax of 3.5 AÊ , a decrease in

resolution from 1.0 to 3.3 AÊ causes Axx(%) to increase from

0.2 to about 2.8. At the resolution of 2.4 AÊ , Axx(%) is only 1.8.

Comparable values are obtained for Ayy(%) (2.0) and Azz(%)

(1.2). Owing to the diagonal normalization, Axy(%), Axz(%)

and Ayz(%) have much lower values. They are 0.3, 0.2 and 0.2,

respectively. ABB(%) is 1.1. The very good accord between the

two methods can also be appreciated visually in Fig. 1. A

further decrease in protein size does not worsen the statistics

appreciably. In the case of human insulin-like growth factor

(IGF), whose deposited structure (PDB code 1gzr;

Brzozowski et al., 2002) has 61 amino acids in the asymmetric

unit, the average Aii(%) and Aij(%) indices at 2.4 AÊ are 2.2

and 0.3, respectively. ABB(%) is 1.4. As expected, for a protein

of larger size the agreement improves. In the case of the PknB

Ser/Thr kinase from Mycobacterium tubercolosis (PDB code

1phk; 260 amino acids in the asymmetric unit) the average

Aii(%) and Aii(%) at 2.4 AÊ are 0.9 and 0.2. ABB(%) is 0.6.

Matrix elements calculated with the integration method

therefore represent remarkably well those obtained by

summation. This result supports the use of the fast integration

method for the purpose of minimization.

6.2. Examples of refinement

The scoring algorithm which uses the sparse approximation

of I has been implemented in the latest version of the

program REFMAC5 (version 5.2.0). As in previous versions of

the program, the solution of the system of linear equations (4)

is carried out using a preconditioned conjugate-gradient

method (Golub & Van Loan, 1996). This technique does not

require the inversion of the matrix I to calculate the para-

meter shifts. At present, only I elements for positional and

ADPs (isotropic, mixed or anisotropic) parameters are used in

the re®nement. In future versions, however, the list can easily

be extended, since all equations for the calculation of the

various elements have already been implemented. In prin-

ciple, this method can also be adapted to multipole re®nement

(Coppens, 1997).

The algorithm for the calculation of the sparse I is very

ef®cient. Using an Acer laptop model 603TER equipped with

a Pentium III 550 MHz processor and 256 MB memory and

the default options (see below) for B±D tabulation, I
elements are calculated on average in fractions of a second.

The range of B values for tabulation is automatically

determined by the program on the basis of the current range

of ADPs and the chemical elements present in the structure.

The maximum distance Dmax can be chosen by the user within

a radius which depends on the total number of atoms in the

structure. Depending on the molecular size, in the current

version distances up to �7.0 AÊ can be considered. This limit is

large enough for minimization applications, as the magnitude

of off-diagonal elements falls rapidly with the increase in the

interatomic distances of their parent atoms (Fig. 1). Thus, off-

Figure 2
The behaviour of the R statistics in identical parallel re®nement runs of
PknB (Ortiz-Lombardia et al., 2003). The drops in R and Rfree obtained
using the version 5.1.24 of the program REFMAC5 are shown by red
circles and squares, respectively. The drops in R and Rfree achieved using
the latest version of the program (5.2.0) are shown in by green circles and
squares, respectively. The continuous line refers to the re®nement carried
out using only diagonal elements of I. The dotted line refers to the
re®nement performed using the sparse approximation of I.

Figure 3
The effect of the inclusion of off-diagonal elements of I in the re®nement
of an aromatic residue. Phe23 of human IGF (Brzozowski et al., 2002) was
positioned out of density (shown in red). 15 cycles of positional
re®nement using only the diagonal elements of the matrix led to the
structure shown in yellow. The same number of cycles with the inclusion
of the off-diagonal elements of I up to 1.6 AÊ and up to 3.5 AÊ produced
the structures displayed in cyan and white, respectively. Electron density
is shown at the 1.5� level.



diagonal matrix arising from atoms far from each other can in

practice be safely neglected. Currently, the default value is set

at 3.5 AÊ . This cutoff value allows the correlations between

bonded atoms, which are the most signi®cant, to be taken into

consideration and also the correlations between atoms related

by non-bonding interactions.

Tests on various structures show that the latest version of

the program performs generally better than version 5.1.24,

which used an approximation of the diagonal Hessian. For

example, the behaviour of the R statistics in the case of the

restrained re®nement of PknB using data extending to 1.95 AÊ

resolution is shown in Fig. 2. The starting model for re®nement

was a PknB model taken at an intermediate stage of re®ne-

ment after a round of model rebuilding. The initial R factor

and Rfree for this structure were 0.318 and 0.359, respectively.

In this case, version 5.2.0 using the diagonal approximation of

I gives in ten cycles an improvement in R factor/Rfree of 0.35/

0.6% compared with version 5.1.24. The ®nal R factor and

Rfree are 0.264 and 0.314, respectively. The effect of the

inclusion of off-diagonal I in the re®nement has been tested

carrying out parallel re®nement runs with the latest version of

the program using either only the diagonal elements of I or

the default sparse I matrix. Although the improvements

attainable with the inclusion of the off-diagonal elements are

intrinsically limited owing to strong diagonality of the matrix,

we have observed that the use of the sparse approximation

marginally improves the convergence of the re®nement

(Fig. 2). At the early stages, the use of off-diagonal matrix

elements produces better agreement statistics for a given

number of cycles of re®nement.

The rate of convergence is correlated to the amount of off-

diagonal elements employed. To show this effect, residue

Phe23 of IGF was displaced from its position by adding a 45�

rotation to both �1 and �2 (in red in Fig. 3). 15 cycles of

positional re®nement were then performed by using only the

diagonal elements of I, the diagonal elements plus the off-

diagonal elements with a cutoff value Dmax of 1.6 AÊ and the

diagonal elements plus the off-diagonal elements with a cutoff

value of 3.5 AÊ . Fig. 3 shows that the re®nement which uses the

3.5 AÊ cutoff has converged within the number of minimization

cycles (in white), whereas that which uses only the diagonal

has not yet brought the residue into density (in yellow). The

use of less off-diagonal elements (1.6 AÊ cutoff) gives an

intermediate side-chain position (in cyan) which is close to the

converged one.

7. Conclusions and future developments

Fisher's information I and the related scoring method of

minimization have been applied to maximum-likelihood

macromolecular crystallographic re®nement and implemented

in the program REFMAC5. The minimization algorithm

performs satisfactorily. The sparse-matrix approximation of I
is currently used.

The present work has an immediate development. This

relates to the concept of the Fisher's information in statistics

as an estimation indicator. The Cramer±Rao inequality (Rao,

1945; Cramer, 1946) states the inverse proportionality

between I and the variance var�t̂� of the unbiased estimate t̂ of

the parameter t,

I � 1

var�t̂� : �28�

This relation4 explains why I is said to be a measure of

information. Its value increases as the estimation quality

increases. At the validation stage, Fisher's information there-

fore represents an adequate statistical tool for the estimation

of errors associated with crystallographic parameters. The

routine estimation of parameter error requires the fast esti-

mation of both I and of its inverse. In this paper, we have

shown how I can be ef®ciently calculated. Efforts now need to

be put into ®nding rapid ways of calculating Iÿ1 and into the

assessment of how the approximations introduced by the

integration algorithm are propagated in the inversion or

pseudo-inversion step. With respect to the latter point,

different inversion procedures will perform differently.

Numerical tests will be required to evaluate the best algo-

rithm.

Fisher's information can also play a role in devising a

correct weighting scheme in macromolecular re®nement.

Lebedev et al. (2003) have used the full covariance matrix to

show that the weights between the X-ray and the geometrical

terms can be estimated using an approximation of a marginal

likelihood function. A practical application of this technique

can be sought having a good approximation of the full I to

hand.

Owing to the extremely low CPU requirements of our

method of calculation of I, second-order minimization could

also be applied to real-space re®nement used by molecular-

graphics applications. This can be performed because owing to

Parseval's theorem the minimization in real-space can be

performed using the derivatives with respect to the reciprocal-

space residual (Diamond, 1971). The application to real-space

re®nement is in principle even simpler and faster than that in

reciprocal-space, as E(Wh) is constant. This eliminates the

disadvantage of table update.

APPENDIX A
An equivalent expression for Wh

The de®nition of I according to (3) allows the derivation of an

alternative expression for Wh. If the likelihood has the form

L � ÿ 1

2

P
h

log P�jFhoj; Fhc� �
1

2

P
hLh; �29�

where Lh depends only on the re¯ection h, Fh = F�ÿh and

Lh = Lÿh, then by applying the chain rule twice the second-

derivative matrix can be written as
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4 Equation (28) is valid for a mono-dimensional function. An extension for the
multivariate case can be found in Stuart et al. (1999).
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where �nm is the Kronecker delta.

The expected value of the ®rst term is zero. That of the last

term is small, as it depends on the phases. I can therefore be

approximated by

I�pi; pj� �
1

2

P
h

E @2L

@A2
hc

� @2L

@B2
hc

� �
@Fh

@pi

� �
@Fh

@pj

� ��
: �31�

From equations (2) and (3), we obtain the equivalence

E @Lh

@Ahc

ÿ i
@Lh

@Bhc

���� ����2
 !

� E @2Lh

@A2
hc

� @
2Lh

@B2
hc

� �
: �32�

Thus, according to (29), the approximation (31) coincides with

that given by (9) and (10). Note that [(@2Lh/@A2
hc) +

(@2Lh/@B2
hc)] can be either positive or negative, whereas its

expectation is always non-negative.

APPENDIX B
Extension of I to multi-crystal refinement

Here, we outline a method to use the Fisher's information in

the case of observations originating from more than one

crystal. For example, it could be applied to MAD/MIR cases

or unliganded/liganded cases.

Let us assume that the form of the likelihood function is

L � ÿ 1

2

P
h

log P�Iho; Fhc� �
1

2

P
h

Lh; �33�

where Iho and Fhc are random vectors of observations and

calculated structure factors, respectively. Let also assume the

invariance Lh = Lÿh and that Fh = F�ÿh.

The ®rst derivative of this function with respect to the

model parameters can be expressed as the sum of the scalar

products

@L

@pi

�Ph

@L

@Ahc

ÿ i
@L

@Bhc

� �
@Fhc

@pi

: �34�

This equation can be used to calculate the derivatives of the

likelihood with respect to the atomic parameters using FFT as

described for the single-crystal case by Agarwal (1978). In the

multi-crystal case, the number of FFTs required is equal at

most to the number of crystals treated.

If the ®rst derivatives of the likelihood function with respect

to the real and imaginary parts of the structure factors are

uncorrelated for different re¯ections, then we can write

Fisher's information in the quadratic forms

E @L

@pi

@L

@pj

� �
�P

h

@Fhc

@pj

� ��
E
�

@L

@Ahc

ÿ i
@L

@Bhc

� ��
� @L

@Ahc

ÿ i
@L

@Bhc

� ��
@Fhc

@pi

� �
� P

h

@Fhc

@pj

� �
E
�

@L

@Ahc

ÿ i
@L

@Bhc

� �
� @L

@Ahc

ÿ i
@L

@Bhc

� ��
@Fhc

@pi

� �
; �35�

where pi and pj are parameters belonging to one or different

crystals. Owing to the presence of the phase term, the second

summation term can be predicted to be very small.

Let us now analyse [(@L=@Ahc) ÿ i(@L=@Bhc)]. Most like-

lihood functions for multi-crystal cases have the form (here we

use the assumption that the intensities but not the amplitudes

of the structure factors are the observables)

P�Iho; Fhc� � ��kj"�j�ÿ1
R

. . .
R

P�Iho;Fh; Fhc�
� exp�ÿ�Fh ÿ Fhc��T�"��ÿ1�Fh ÿ Fhc��
� dA1 dB1 . . . dAk dBk; �36�

the derivatives then become

@L

@Ahc

ÿ i
@L

@Bhc

� �
� �"��ÿ1EFh

�Fh ÿ Fhc�; �37�

where the expectation is taken using the probability distri-

bution of P(Fh; Iho, Fhc). In the above equation [(@L=@Ahc) ÿ
i(@L=@Bhc)] is a vector and the right-hand side should be

understood as a matrix-to-vector multiplication.

Thus, the derivative of the likelihood for each structure

factor is a linear combination of the moments for the various

crystals. If the ®rst moments can be evaluated, then the deri-

vatives can be calculated as a linear combination and I can be

calculated using set of resolution-dependent functions. The

actual calculation of the moments is outside the scope of this

work and will not be considered here.

It is worth noting that although the above equations are not

valid when structure factors arise from anomalous scatterers,

i.e. for combinations of F+ and F�ÿ, they can equally be used

with suitable modi®cations. The derivatives can be taken with

respect to F and F 00. Then, using the fact that F+ and F�ÿ are

linear combination of F and F 00 (F+ = F + iF 00, F�ÿ = F ÿ iF 00),

their derivatives can also be written.

APPENDIX C
Fast calculation procedure

In this appendix, some details of the method used for the fast

calculation of Fisher's information matrix elements as inte-

grals are given. As an example, positional elements will be

used. For any other type of element, the necessary equations

can be derived by analogy.



C1. Tabulation step

Re¯ection indices in the rotated coordinate system de®ned

in x5.1 are expressed in terms of spherical polar coordinates

according to

h01 � � sin cos �

h02 � � sin sin �

h03 � � cos ; �38�
where

0 � �<1
0 �  � �
0 � � � 2�: �39�

Considering that the Jacobian J for the coordinate transfor-

mation is

J � �2 sin ; �40�
I 0xixj

integrals of equation (24) can be written as

I 0xx �
Rsmax

smin

E�W���� exp�ÿB�2=4��4
R�
0

R2�
0

sin2  cos2 �

� cos�2��D cos � sin d� d d�; �41�

I 0yy �
Rsmax

smin

E�W���� exp�ÿB�2=4��4
R�
0

R2�
0

sin2  sin2 �

� cos�2��D cos � sin d� d d�; �42�

I 0zz �
Rsmax

smin

E�W���� exp�ÿB�2=4��4
R�
0

R2�
0

cos2  

� cos�2��D cos � sin d� d d�; �43�

I 0xy �
Rsmax

smin

E�W���� exp�ÿB�2=4��4
R�
0

R2�
0

sin2  sin � cos �

� cos�2��D cos � sin d� d d�; �44�

I 0xz �
Rsmax

smin

E�W���� exp�ÿB�2=4��4
R�
0

R2�
0

sin cos cos �

� cos�2��D cos � sin d� d d�; �45�

I 0yz �
Rsmax

smin

E�W���� exp�ÿB�2=4��4
R�
0

R2�
0

sin cos sin �

� cos�2��D cos � sin d� d d�: �46�
An inspection of the above integrals gives that (42) is equal to

(41) and that (44), (45) and (46) are zero. In the case of

positional elements, therefore, the rotation of the coordinate

system reduces the number of independent elements from six

to two. Similar simpli®cations are obtained for the other

elements.

Analytic integration over d� and d simpli®es the above

non-zero expressions to

I 0xx � I 0yy � 4�
Rsmax

smin

E�W�����4 exp�ÿB�2=4�

� sin�2��D�
�2��D�3 ÿ

cos�2��D�
�2��D�2

� �
d� �47�

and

I0zz � 4�
Rsmax

smin

E�W�����4 exp�ÿB�2=4�

� ��2��D�2 ÿ 2� sin�2��D�
�2��D�3 � 2 cos�2��D�

�2��D�2
� �

d�: �48�

These integrals are evaluated numerically in the chosen B±D

grid.

C2. Rotation step

C2.1. The rotation matrix. As discussed in x5.2, in order to

calculate the various matrix elements for a particular atom

pair mn the explicit form of the rotation matrix R which brings

the z axis parallel to the interatomic vector Dmn is needed.

This matrix can be de®ned by the Euler angles �, � and 	
where �, � and 	 represent the angles corresponding to

sequential anticlockwise rotations around z, y0 (the y axis after

the ®rst rotation) and x00 (the x axis after the second rotation),

respectively.

Such a matrix can be constructed from the angles �, � and 
formed by Dmn with the directions of the x, y and z axes,

respectively, considering that

� � arcsin�cos�= sin � if cos� � 0

ÿ arcsin�cos�= sin � if cos�< 0

�
;

� �  if cos � � 0

ÿ if cos �< 0

�
:

The angle 	 can take any value since there is no restriction on

the position of the xy plane. Let, for convenience, 	 = 0. The

rotation matrix has then the form

R �
cos � cos � cos � sin � ÿ sin �
ÿ sin � cos � 0

sin � cos � sin � sin � cos �

0@ 1A:

C2.2. Evaluation of elements in the original setting. Let X

and Z be the integrals in (47) and (48), respectively. If txixj

denotes an element of the matrix RT , application of (26)

leads to
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Ixx � �t2
11 � t2

12�X � t2
13Z

Iyy � �t2
21 � t2

22�X � t2
23Z

Izz � �t2
31 � t2

32�X � t2
33Z

Ixy � �t11t21 � t12t22�X � t13t23Z

Ixz � �t11t31 � t12t32�X � t13t33Z

Iyz � �t21t31 � t22t32�X � t23t33Z

Iyx � Ixy

Izx � Ixz

Izy � Iyz: �49�

In matrix form, the same set of equations can also be written

as

I � RTI0R: �50�
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